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Passivity-based control of a bioreactor system
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This article deals with an example of advance control techniques applied to a bio-
chemical system, the mathematical model and the constrains derived from the discrete
implementation of a continuous control policy. The theory is developed on a simplified
model of a bioreactor to be regulated and passivity-based control is used. The biologi-
cal interpretation of the results derived from the mathematical model takes into account
the time required for chemical processes in order to obtain cells and nutrients.
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1. Introduction

It is well known the wide range of applications of control theory and math-
ematical modelling; so, it seems useful, to check new control theories on real life
problems taken from different subject areas.

This article deals with an example of application of nonlinear control tech-
niques in the area of chemical engineering. It is worth remarking the highly non-
linear dynamic behavior of this class of systems for which linear controller design
generally fails, or shows very poor performance. This characteristic is valid even
within a very small range of operation in the phase plane. Thus, advanced feed-
back control schemes seem to be required.
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The problem we are involved with is, basically, a regulation problem defined
on a continuous stirred tank reactor containing a liquid mixture of water, nutri-
ents and biological cells. Feed substrate is introduced into the tank where the
cells mix with the substrate while the culture volume is kept constant. The prob-
lem will be solved in the framework of Passivity-Based Control (see Ortega et al.
[1]).

The control of a bioreactor constitutes a challenging control problem for
several reasons. Although the reactor description involves but a few variables
and its behavior is easily simulated, its nonlinearity makes it difficult to control.
This problem satisfies the goals of relevance to real-world problems being easy
enough to check the applicability of new nonlinear control techniques. On the
other hand, the regulation problem in a bioreactor has been widely treated in
the literature; for instance: in [2] as a problem related to the types of equilibria
in classical dynamic systems, exact input/output linearization is used in [3], while
adaptive control approaches may be found in [4–7]. A flatness based approach is
developed in [8]. Control schemes, based in neural networks, were presented in
[9–11]. For an extensive treatment of the model and control issues for bioreac-
tors, the reader is referred to the tutorial paper of Bastin and Van Impe [12]. It is
generally accepted that improvements in bioreactor control techniques may result
in significant savings to the biochemical industries and a significant improvement
in productivity for large volume applications.

As far as passivity is concerned, basic definitions were introduced in the
early 1970s in the work of Willems [13,14], since then, different authors has
been developing the subject, namely: Vidyasagar [15] and Zames [16], Hill and
Moylan [17–19], Byrnes et al. [20], Kokotovic and Sussman [21] and more
recently van der Schaft [22], Ortega et al. [1] and Sira-Ramı́rez [23,24]. Passivity-
based control (PBC) exploits the system’s physical properties in connection to its
energy managing and dissipation enhancement possibilities.

The outline of the paper reads as follows: section 2 is devoted to a brief
summary of Passivity Based Control, energy shaping and damping injection. The
bioreactor model is explained in section 3. The regulation problem is solved in
section 4. Simulation results can be found in section 5 and, finally, the conclu-
sions and a list of references close the article.

2. The “energy shaping and damping injection” control design methodology

Passivity-based control has gained increasing attention in the last decade
to handle nonlinear feedback controller design strategies. The method has been
summarized by Ortega et al. [1] where it is applied to a series of mechanical
and electro-mechanical systems of the Euler–Lagrange type. Generally speaking,
chemical and biological processes do not belong to this class of systems. It is our
aim here to demonstrate that the “energy shaping plus damping injection” design
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methodology can also be advantageously used to efficiently regulate this class
of technological systems, while respecting, from the control actions, the bene-
ficial nonlinearities related to local or global stability. The basic idea, then, is
to exploit the natural energy managing structure of the system, which, roughly
speaking, can generically be identified as consisting of: a conservative part, which
should be respected, a dissipative part, which is regarded as beneficial and should
not be cancelled, a destabilizing part, whose effects need to be counteracted but
without necessarily eliminating these nonlinearities, and, finally, an energy acqui-
sition part, from where our control actions are injected into the system. By
removing the effect of the destabilizing part in the instantaneous variation of
the storage function and, simultaneously, improving the dissipative or damping
characteristics of the system, one may, with a suitable off-lined prescribed refer-
ence trajectory, influence the system responses to follow a prescribed trajectory
thus achieving a pre-specified steady state equilibrium. In this respect, one heav-
ily relies on the minimum phase properties (or stability of the residual dynamics)
of the feedback passivized system.

3. The bioreactor model

Consider a continuous bioreactor, already theoretically investigated by
Agraval and others (1982) in [2]. The system consists of a tank containing a
substrate and biological cells in a liquid mixture. The feed substrate is intro-
duced into the tank where the cells mix with the substrate maintaining the vol-
ume at a fixed level by removing the tank contents at an outflow rate equal to
the incoming rate. The process is characterized by X, the cell concentration, S,
the substrate concentration and SF , the feed substrate concentration, the reactor
volume V , the volumetric feed flow rate F , the specific growth rate µ(S), the spe-
cific substrate consumption rate σ(S), and the real time t . The evolution of the
process is described by

dX

dt
= −FX

V
+ µ(S)X,

dS

dt
= −F(SF −S)

V
− σ(S)X.

(1)

The first equation (1) describes the evolution of the biological cells with
time through the variation of µ(S)X minus the cells which escape from the
tank FX/V . The second equation (1) shows the variation of substrate with
time as the substrate introduced minus the substrate escaping from the tank
F(SF − S)/V , minus the substrate consumed by the biological cells σ(S)X. The
system (1) represents a model based on experimentation.

The flow rate F is the control input variable for the bioreactor. The objec-
tive of the control is to achieve and maintain the number of cells, or substrate
concentration, at a desired level, starting from arbitrary initial conditions.
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In accordance with the substrate inhibition and the notation used in
Anderson and Miller [25], let us consider the following dimensionless variables:
x1 is the normalized cell concentration and x2 is the substrate conversion, which
will be called, normalized nutrients concentration,

x1 = X

Y(SF )SF

,

x2 = (1 − S)

SF

.

The input variable is u, which is related to the flow through the tank,

u = F/V

µ(SF )
.

Two new parameters, β and γ , appear when the substrate inhibition model is
considered. The normalized system which describes the bioreactor is then:

ẋ1 = −x1u + x1(1 − x2)ex2/γ ,

ẋ2 = −x2u + x1(1 − x2)ex2/γ 1+β

1+β−x2
,

(2)

where the output variable may be considered to be either x1 or x2.
In the stated case, (1 − x2)ex2/γ is the normalized specific growth rate, while

(1 − x2)e
x2
γ (1 + β)/(1 + β − x2), is the normalized nutrients consumption rate,

and t∗ is the dimensionless time, which verifies

t∗ = t µ(SF ). (3)

Some constraints must be considered. Cell and nutrient amounts belong
each to the interval, [0, 1], i.e., (x1, x2) ∈ [0, 1]× [0, 1]. The input variable is posi-
tive and less than or equal to 2, ω ∈ [0, 2], the growth rate parameter is γ = 0.48
and, according to [25], the nutrient inhibition parameter is β = 0.02.

3.1. Generalities of passivity-based control

We consider systems of the form

ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ R,

y = h(x), y ∈ R
(4)

to which a positive definite energy storage function, denoted by V (x), is associ-
ated. We assume that the following transversality condition holds locally valid in
the region of operation of the system,

LgV (x) �= 0.

Also, it is assumed that the output y = h(x) is locally nonzero in this region.
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The time derivative of V (x), along the controlled solutions of the system,
is given by

V̇ = Lf V + uLgV = LgV

(
u + Lf V

LgV

)
.

Consider the following locally invertible input coordinate transformation:

u = −Lf V

LgV
+ v

h

LgV
,

which makes the closed loop system lossless, as, V̇ = yv. The closed loop system
is therefore given by

ẋ = f (x) − g
Lf V

LgV
+ g

h

LgV
v.

It is easy to see that, after some algebraic manipulations, that the closed loop
system is of the form

ẋ = J (x)
∂V

∂x
+ γ (x)v,

y = γ T (x)
∂V

∂x
, (5)

where

J (x) = 1
2LgV

[
f (x)gT (x) − g(x)f T (x)

]
,

γ (x) = g(x)
h(x)

LgV (x)
, (6)

where, clearly, J (x) is a skew-symmetric matrix. The previous developments also
allow one to envision a generalized canonical form for affine systems, which is of
the Generalized Hamiltonian type including dissipation and de-stabilizing terms.
Indeed the original system, with the established assumptions, is trivially equiva-
lent to,

ẋ = f (x) − g
Lf V

LgV
+ g

Lf V

LgV
+ g(x)u, y = h(x). (7)

The input coordinate transformation u = [h(x)/LgV (x)]v and further algebraic
manipulations lead to,

ẋ = [J (x) + S(x)]
∂V

∂x
+ γ (x)v,

y = γ T (x)
∂V

∂x
, (8)
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where

J (x) = 1
2LgV

[
f (x)gT (x) − g(x)f T (x)

]
,

S(x) = 1
2LgV

[
f (x)gT (x) + g(x)f T (x)

]
,

γ (x) = g(x)
h(x)

LgV (x)
, (9)

where clearly J (x) is a skew-symmetric matrix and S(x) is a symmetric matrix
of, generally speaking, indefinite sign. Our assumptions imply that Lγ V �= 0.
Notice that the partial feedback control law:

v = −
(

1
Lγ V (x)

)[(
∂V

∂xT

)
S(x)

(
∂V

∂x

)]
+ ϑ,

produces, again, a lossless system from the input ϑ towards the output y. Thus,
without loss of generality we can assume that S(x) = 0.

Consider energy storage functions, V (x), whose gradient satisfies the follow-
ing linear property (in fact, any positive definite quadratic function of the state
qualifies as such):

∂V (x)

∂x
− ∂V (x|d)

∂x|d = ∂V (e)

∂e
,

with e = x − x|d being a “tracking error” and x|d is an auxiliary state vector
which is to be designed so that the (passive) output of the system, y = h(x),
tracks a designed trajectory.

Consider then, over the class of derived lossless Generalized Hamiltonian
systems, the stabilization of the tracking error by means of Lyapunov stability
theory. i.e., let V (e) = V (x − x|d) be, as before, a positive definite storage func-
tion of e. Then

V̇ (e) = ∂V (e)

∂eT

[
J (x)

∂V

∂x
+ γ (x)v − ẋ|d

]

= ∂V (e)

∂eT

{
J (x)

∂V (e)

∂e
+ γ (x)v + J (x)

∂V (x|d)
∂x|d − ẋ|d

}
.

Notice that if we let x|d satisfy the following damped (linear) time-varying
dynamics with output equation:

ẋ|d = J (x)
∂V (x|d)

∂x|d + RI (e)
∂V (e)

∂e
+ γ (x)v,

yd = γ T (x|d)∂V (x|d)
∂x|d (10)
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with, RI (e), being a strictly positive definite symmetric matrix, which is a func-
tion of the tracking error e alone. We obtain:

V̇ (e) = ∂V (e)

∂eT
[J (x) − RI(e)]

∂V (e)

∂e
= −∂V (e)

∂eT
RI (e)

∂V (e)

∂e
< 0

and, hence, the tracking error, e, asymptotically converges to zero and the state
x tracks the controlled state x|d . As a consequence, the output of the system,
y = h(x) = γ T (x)[∂V/∂x], also tracks the auxiliary output, yd = h(x|d) = γ T (x|d)
[∂V (x|d)/∂x|d ]. The control of the linear time-varying system (10) is performed
so that the output yd tracks a desired output trajectory, y∗(t). This can be
achieved by straightforward inversion of (10). The corresponding time-varying
residual dynamics of such an auxiliary system, evidently, qualifies as the state of
the dynamic feedback controller. The feedback passivity of the original system,
and of the auxiliary system, guarantee the minimum phase properties of such a
residual dynamics. The obtained dynamic output tracking controller is, therefore,
stable.

4. Passivity-based controller design

With f (x) = x1(1 − x2)ex2/γ (1, (1 + β)/(1 + β − x2))
T , g(x) = (−x1, −x2)

T

and h(x) = x1, the previous system is of the form,

ẋ = f (x) + g(x)u,

y = h(x).
(11)

We consider the storage function V (x) given by

V (x) = 1
2(x2

1 + x2
2).

The storage function directional derivative LgV (x) along the control input vec-
tor field g(x) is given by

LgV (x) = −(x2
1 + x2

2),

which is not zero everywhere in [0, 1]× [0, 1] except on the point (x1, x2) = (0, 0),
which does not interest us. Thus, the operating region may be constituted by the
following set

X = [0, 1] × [0, 1] − {(0, 0)}.
The equilibrium points of the system (2) are given by the solutions of the

equations

0 = −x1u + x1(1 − x2)ex2/γ ,

0 = −x2u + x1(1 − x2)ex2/γ
1 + β

1 + β − x2
.
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This system has a trivial solution, (x1, x2) = (0, 0), which is of no interest. The
case u = 0 in the original system produces two trivial solutions, namely (x1, 1)

and (0, x2). Assuming x1 > 0, x2 > 0 and u �= 0, it can be proved that the equi-
librium points lie on the parabola

x1 = − 1
1 + β

x2
2 + x2, (12)

which has the vertex at ((1 + β)/4, (1 + β)/2) and it cuts the x2 axis on (0, 0)

and (0, 1 + β) (figure 1).
We obtain the given system in the form

ẋ = [J (x) + S(x)]
∂V

∂x
+ g(x)u,

where

J (x) = −x1(1 − x2)ex2/γ

2(x2
1 + x2

2)

(
x2 − x1

1 + β

1 + β − x2

)(
0 −1
1 0

)
, (13)

S(x) = x1(1 − x2)ex2/γ

2(x2
1 + x2

2)

(
2x1 x2 + x1

1+β

1+β−x2

x2 + x1
1+β

1+β−x2
(1 − x2)ex2/γ

)
, (14)

Figure 1. Parabola of the equilibrium points.
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and

RI(e) =
(

R1(e1) 0
0 R2(e2)

)
. (15)

The following input coordinate transformation makes the system passive
with respect to the proposed storage function V (x).

u = x1

x2
1 + x2

2

[
(1 − x2)ex2/γ

(
x1 + x2

1 + β

1 + β − x2

)
− v

]
.

After some simplifications the transformed system in PBCCF is given by

ẋ = −x1(1 − x2)ex2/γ

(x2
1 + x2

2)

(
x2 − x1

1 + β

1 + β − x2

)(
0 −1
1 0

)
x + x1

x2
1 + x2

2

x v. (16)

Using the “energy shaping plus damping injection” controller design methodol-
ogy, the following dynamical feedback controllers is obtained:

If ẋ2|d = 0 is considered

v = (1 − x2)ex2/γ

x2

(
x2 − x1

1 + β

1 + β − x2

)
x1|d − x2

1 + x2
2

x1x2
R2(x2 − x2|d)

with x1|d given by the solution of

ẋ1|d = x1(1 − x2)ex2/γ

x2
1 + x2

2

(
x2 − x1

1 + β

1 + β − x2

)
x2|d + R1(x1 − x1|d) + x2

1

x2
1 + x2

2

v.

In order to simulate the system, we let, as in Anderson and Miller [25], the
parameters γ and β to be given by: γ = 0.48 and β = 0.02.

ẋ1 = −x1u + x1(1 − x2)ex2/γ ,

ẋ2 = −x2u + x1(1 − x2)ex2/γ
1 + β

1 + β − x2
,

ẋ1|d = x1(1 − x2)ex2/γ

x2
1 + x2

2

(
x2 − x1

1 + β

1 + β − x2

)(
x2|d + x1

x2
x1|d

)

+R1(x1 − x1|d) − x1

x2
R2(x2 − x2|d), (17)

where the control input u is

u =



0 if ω ≤ 0,

ω if 0 ≤ ω ≤ 2,

2 if 2 ≤ ω,

(18)
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ω = x1(1 − x2)ex2/γ

x2
1 + x2

2

(
x1 + x2

1 + β

1 + β − x2

)

−x1(1 − x2)ex2/γ

x2
1 + x2

2

(
x2 − x1

1 + β

1 + β − x2

)
x1|d + 1

x2
R2(x2 − x2|d).

5. Simulation results and conclusions

Since the actual implementation is based on a discretized system, a Zeroth
Order Hold is added to the simulation. To design the sampling period we have
taken into account that in chemical processes the time required for obtaining
cells and nutrient concentrations can be significantly large. For the cases dealt
with, a discretization step size of half an hour has been considered.

The relationship between the real time t and the dimensionless time t∗

which is used in computer simulations verifies (3), where µ(SF ) can be limited
by the µ(S) maximum, that is to say µmax.

This value µmax appears tabulated by Heijnen and Roels [26] for different
kinds of cells and substrate which verify the hypothesis of this paper. The values
of µmax fulfill 0 ≤ µmax ≤ 1 and its average approximate value is µmax = 0.25,
both in h−1 units.

If the µmax is 0.25 or has a relatively low value in the interval [0, 1] (this is
by the far most common situation (figure 3), using a computer time �t∗ = 0.125,

Figure 2. µmax values on [0, 1].
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Figure 3. Discrete process of passivitation mode control with (0.2196, 0.32) destination point and
�t∗ = 0.125 and �t∗ = 0.25.
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Figure 4. Discrete process of passivitation mode control with (0.2196, 0.70) destination point and
�t∗ = 0.125 and �t∗ = 0.25.
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corresponding to half an hour of real time, the mode control described is appro-
priate.

If the µmax is 1 or has a relatively high value on [0, 1] scale (which is a very
unusual situation (figure 2)) and if the computer time is let to be �t∗ = 0.5,
which corresponds to half an hour of real time, then the control mode presented
is useful but presents some inconveniences because the control variable should be
modified to a larger extent. However, the value of µmax is rarely greater than 0.5.
In this case, the computer time �t∗ = 0.25 can be used with good results.

• In the discrete case, the passivization mode control presents a quick sta-
bilization time.

• Passivization mode control provides sufficient precision for the tolerance
margins used in this kind of bioreactors.

Figures 3 and 4 corroborate the previous comments. For the same cell con-
centration x1, the system can be stabilized to two different nutrient concentra-
tion x2 in the parabola of the equilibrium points. For instance, for x1 = 0.2196
there are two points in the parabola, x2 = 0.32 and x2 = 0.70. Two simulations
are presented using passivization with x2|d constant for each destination point
(0.2196, 0.32) and (0.2196, 0.70) in figures 3 and 4, respectively. Two simulations
corresponding to �t∗ = 0.125 and �t∗ = 0.25 are carried out in both cases. The
resulting control input and the phase-plane graph are shown in the figures. Note
the discrete implementation of the control input. However, system response tra-
jectories appear to be continuous.
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